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Abstract

The goal of artificial intelligence is to create agents capable of general, adaptive
behaviour in open-ended environments. Guided by the “Bitter Lesson”, we argue
that the most effective path toward this goal is to systematically remove human
priors and allow intelligence to naturally emerge through interaction with a “Big
World” that is orders of magnitude more complex than the agent itself. We propose
the mobile Graphical User Interface (GUI) as a practical proxy for such a world
and introduce Darwin Mobile Agent, an open-source infrastructure designed as a
foundation for autonomous reinforcement learning in this domain. This framework
addresses the data-collection bottleneck in real-world mobile interactions by using
an asynchronous agent-environment loop across parallel cloud-phone instances.
We further propose a conceptual roadmap to systematically remove human priors
from three fundamental pillars of a self-evolving agent: task curricula, outcome
verification, and memory management. We validate that the Darwin infrastructure
provides the stability and scalability required for the first stage of this roadmap:
policy optimisation in the GUI domain. This work establishes the practical and
theoretical foundation necessary to move toward truly autonomous, self-evolving
GUI agents.

1 Introduction

The long-standing goal of artificial intelligence is to create agents capable of general, adaptive
behaviour in open-ended environments. History suggests the most effective path toward this goal is to
develop methods that scale with computation rather than relying on specific human knowledge—an
observation known as the “Bitter Lesson” (Sutton} 2019). This implies that we must systematically
remove human priors from the learning process. Equally important is the nature of the problem itself.
Inspired by bounded rationality (Simon, |1955|[1956)) and the “Big World” hypothesis (Javed and
Sutton, 2024} |Lewandowski et al.| [2025)), we argue that general intelligence emerges as a necessary
adaptation when a bounded agent interacts with a world orders of magnitude more complex than
itself. In such a regime, the agent cannot perceive the global state or learn a perfect policy for every
situation; it must approximate and generalise from limited experience.

Our long-term objective is to apply these principles by designing a self-evolving agent capable of
continuous, autonomous capability expansion solely through interaction. In this report, we address
the first two fundamental infrastructure challenges:

1. The World: We require an experimentally tractable domain that is sufficiently open-ended
to qualify as a “Big World”, mirroring the structure and complexity of the real world.

2. The Agent Learning Framework: We require a learning and interaction architecture
capable of sustaining an autonomous learning loop.
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Figure 1: Overview of the Darwin Mobile Agent Framework. The system employs an asyn-
chronous Rollout Aggregator to bridge the gap between slow, parallelised mobile environments
and high-throughput agent inference. Completed trajectories are passed to a verification module to
generate rewards for continuous policy optimisation.
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The world. We propose the Mobile Graphical User Interface (GUI) as a practical “Big World”
for this investigation. The modern mobile ecosystem acts as a digital proxy for the real world: it is
partially observable, highly non-stationary, and offers a nearly infinite number of composable tasks
(Klissarov et al.,|2025). Unlike static benchmarks (e.g. Atari), mobile apps evolve independently of
the agent, requiring continual adaptation. Yet, unlike physical robotics, the domain remains purely
digital, allowing us to leverage the massive semantic knowledge of Large Language Models (LLMs)
without the constraints of physical embodiment.

We introduce a Gymnasium-based GUI environment (Towers et al.,|2025)) that relies on cloud-based
devices to mitigate the instability we observed in ADB-based emulators (Toyama et al., 2021; |[Rawles
et al.,2024)). In contrast to existing frameworks, our environment avoids reliance on underlying XML
phone states to ensure scalability. Furthermore, our interaction model is asynchronous, enabling the
parallelism required to address data-collection bottlenecks in large-scale reinforcement learning.

The agent learning framework. In accordance with the “Bitter Lesson”, we contend that rein-
forcement learning (RL) is essential for developing self-evolving agents capable of learning through
trial-and-error interaction. We propose that sustaining general, open-ended learning within this
framework necessitates at least three additional components:

* Task Curriculum: A mechanism to propose a stream of problems at the frontier of the
agent’s capabilities, providing a steady gradient of complexity.

* Verification: A mechanism to assess outcomes and generate the reward signals that drive
learning.

* Agent State: A mechanism to persist and organise knowledge, ensuring the agent retains
context across a non-stationary world (e.g. memory).

We refer to these components as the functional anatomy of the self-evolving agent. To support this
structure, we introduce Darwin Mobile Agenﬂ (Figure , a multi-turn learning framework built
upon GiGPO (Feng et al.;|2025) and VERL (Sheng et al.,|2025). The framework employs high-level
abstractions for agents and workflows to decouple internal state (e.g. memory) from interaction logic
(e.g. curriculum), providing the modularity required for autonomously improving the anatomy’s
specific components. To our knowledge, this represents the first open-source end-to-end system for
training mobile GUI agents via reinforcement learning.

We demonstrate the system’s effectiveness by fine-tuning a UI-TARS agent using reinforcement
learning on tasks from Spa-Bench (Chen et al.,|2025)). These experiments verify that our framework
and environment provide the stable, scalable infrastructure required to improve capabilities in complex
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GUI environments. We also investigate how critic bias impacts training stability and demonstrate that
our asynchronous design improves throughput without compromising learning progress.

The remainder of this paper is organised as follows: Section [] provides background; Section [3]details
the scalable environment; Section ] presents the agent learning framework and our proposed anatomy;
Section [5]discusses experimental results; and Section [6]concludes.

2 Background

Inspired by work on general reinforcement learning (Hutter, |2005; Hutter et al., |2024)) and recent
work moving beyond the Markov property (Dong et al.| [2022; |Abel et al., [2023]2024; Elelimy et al.,
2025), we adopt a general agent-environment formulation. To support our goal of self-evolving
agents, we purposefully make minimal assumptions about underlying dynamics, accommodating
non-stationary, non-Markovian, and partially observable settings.

2.1 The Agent-Environment Interface

We first define the interaction boundary between the agent and the environment (Dong et al., |[2022)).
Definition 2.1. The interface is a pair of finite sets (A, O), such that | A| > 2 and |O] > 2.

This interface creates a space of interaction sequences. We call any sequence up to a discrete decision
point ¢ € (0, 1,...) ahistory (Hutter, [2005; Dong et al., 2022; |Abel et al.,2023).

Definition 2.2. A history h; € # is a sequence of observations and actions:
ht = (00, ag, 01, a1, ...,0¢). ()

We define the agent and environment as stochastic functions over these histories (Russell and
Subramanian, [1994).

Definition 2.3. An agent is a function A : H — A(.A) mapping a history to a probability distribution
over actions.

Definition 2.4. An environment is a function e : H x A — A(O) mapping a history and an action
to a probability distribution over observations.

At each decision point, the agent observes o; ~ e(h:—1,a;—1) and selects an action a; ~ A(hy).
Following the reward hypothesis (Sutton et al., 1998} Bowling et al.| [2023)), we assume a scalar
reward signal can capture all of the agent’s goals and purposes.

Definition 2.5. The reward function r : 4 x A — R maps a history and action to a scalar feedback
signal.

‘We make no assumptions about the source of the reward; it may be external (e.g. from the environment)
or internal (e.g. from the agent). The agent aims to learn a policy that maximises a statistic of this
reward. Here, we focus on the expected discounted sum of rewards (expected return):

T
> wtn] : )
t=0

E

where ~y is a discount factor.

This formulation captures goal-conditioned objectives. By embedding a semantic goal g (e.g. natural
language instructions) in the observation o, the reward function—operating on the history of these
observations—implicitly becomes a function of the goal.

2.2 Large Language Models as Agents

We implement the abstract agent A using Large Language Models (LLMs). This requires distinguish-
ing between high-level environment actions a € A and the model’s low-level generation process.
The LLM uses a fixed vocabulary of tokens V. We denote the set of all finite sequences of these
tokens as V*. We parameterise the agent’s policy 7y using a neural network with weights 6.



At step ¢, the model generates a token sequence y; = (y?, 4}, - ..,y ) autoregressively:
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where ;¥ are the tokens generated so far in the current step. We define the agent state as s, = 1 (h;),
where a context processing function ¢ : H — V* maps interaction history to a finite context window.
This state effectively acts as the agent’s memory, transforming raw history into a discrete prompt (e.g.
via truncation or summarisation).

The generated sequence ¥, is not the environment action itself. It may contain reasoning or formatting.
We therefore define a deterministic parser £ : V* — A to extract the executable command:

ar = &(ye)- “

This explicitly separates the agent’s internal reasoning (y;) from its external influence (a;).

2.3 Policy Optimisation

In our experiments, we learn parameters 6 to maximise expected return using policy gradient methods
(Sutton et al.,|1999). The gradient of the objective J(#) is defined as:
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where A™ (s, y=%) = Q™ (s4, y~F) — V™ (s4, y~F) is the advantage function, which quantifies the
relative value of a specific token compared to the baseline state-value.

We employ Proximal Policy Optimisation (PPO) to optimise this objective (Schulman et al., 2017).
PPO maximises a surrogate objective via importance sampling, reweighting transitions based on the
divergence between the current policy and the policy used during data collection. We maximise the
clipped surrogate loss:

T lyel=1

L) =E Z Z min (pf(@)ﬁt7k,clip(pf(9), 1—¢1+ e)flt,k) . (6)

t=0 k=0
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This clipping mechanism enforces a trust region, preventing large, destabilising policy updates.

We estimate the token-level advantage At, & using Generalised Advantage Estimation (GAE) (Schul+
man et al., 2015) and a learned value function Vj (s, yfk) This function approximates the expected

return conditioned on the agent’s state and partial token sequence. The advantage At’k is the
exponentially weighted sum of temporal difference (TD) errors d; 1, computed at the token level:
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Values for intermediate tokens are bootstrapped from the subsequent token; the final token incor-
porates the reward r, and is bootstrapped from the next decision step. Value function parameters ¢
are optimised by minimising the mean squared error between the predicted values and the empirical
returns:
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Alternatively, we could use approaches like GRPO to estimate the trajectory-level advantage and
assign it equally to each token (Shao et al.,[2024)). While effective for bandit-like problems (Guo
et al.| [2025)), failing to distinguish individual token and action contributions is inevitably detrimental
in prolonged, multi-turn interactions.



3 A Scalable Asynchronous Mobile Environment

In this section, we instantiate the agent-environment interface as a Gymnasium environment (Towers
et al., [20235)) for mobile GUIs. We detail our cloud-based infrastructure and asynchronous execution
model, selected for stability and scalability.

The environment’s general interface is independent of proprietary internals, mirroring human interac-
tion. Observations o; consist of raw pixel screenshots and task instructions g. The action space A
comprises primitive coordinate-based operations (e.g. click, drag). Our current iteration also includes
specific high-level operations, such as open-app and type, to improve training efficiency. A complete
list of supported actions is provided in Appendix [C] This specification is exposed via the standard
Gymnasium interface.

We implement this interface on a fleet of cloud-hosted Android instances, controlled via the Android
Debug Bridge (ADB). We prefer this infrastructure over local emulation (Toyama et al.| 2021;|Rawles
et al.||2024) or physical farms (Li et al.,2025) because it avoids hardware constraints on app coverage,
enables flexible device scaling, and we find that dedicated, predictable cloud resources offer greater
stability.

In this high-fidelity setting where smartphone agents must operate at human-scale latency, envi-
ronment interaction, not model inference, is the primary training bottleneck. We use vectorised
interaction to achieve the necessary throughput. However, mobile step durations vary significantly
due to network latency, device processing, and disconnections. Standard synchronous vectorisation
forces the entire batch to wait for the slowest device, stalling the learning process and wasting GPU
resources. To prevent this, we propose a scalable asynchronous architecture.

3.1 Cloud-Native Asynchronous Architecture

To realise this asynchronous design, we decouple environment workers from policy inference. Each
worker manages a dedicated cloud device in an isolated process. Upon completing a step, the worker
immediately pushes the result to a central inference queue and continues execution.

This architecture eliminates the rigid phase separation of synchronous RL, where the GPU remains
idle while waiting for rollouts. Instead, it enables continuous pipelining: the learner consumes batches
from the queue as soon as the minimum batch size is met, allowing concurrent GPU computation and
environment execution. Fast devices continue generating experience even when others are temporarily
blocked. This design enables massive scaling, effectively rendering interaction latency negligible
through parallelism. Consequently, the number of workers is decoupled from the inference batch
size. The system operates on small, responsive batches from whichever workers are ready, rather
than waiting for a massive vector to synchronise. In the mobile domain—where latency is high and
variable—this minimises wall-clock wait times and improves hardware utilisation.

3.2 Persistent State Management

A central challenge is managing device state across episodes. Standard reinforcement learning resets
the system to a pristine state at the start of each episode. On mobile devices, a complete reset (e.g.
reflashing the system image) takes several minutes, making it infeasible even for asynchronous
architectures at scale. To maintain throughput, our environment performs minimal cleanup by
returning to the home screen after each episode. This introduces persistence: changes to the file
system or clipboard may persist into the next episode.

Crucially, the mobile domain involves state external to the device, such as social media posts, which
cannot be locally reverted. A “perfectly clean state” is unrealistic. We treat this non-stationarity
as a feature: by exposing the agent to persistent “noise” and irreversible state, we encourage the
development of robust policies capable of operating in real-world ecosystems. However, to prevent
state saturation from rendering a finite number of tasks trivial, our initial experiments apply periodic
hard resets via the cloud provider’s APIs.



3.3 Task Definition and Lifecycle

We define a task as a tuple containing the natural-language instruction g and metadata, such as
the target application. This lightweight representation supports diverse tasks by making minimal
assumptions about the underlying system (see Appendix [A]for examples).

Realistic tasks often have preconditions or leave side effects. Because we preserve state, we cannot
rely on automatic resets to handle these. Instead, we introduce a Task Lifecycle Protocol. Configured
by optional task parameters, this decomposes interaction into three phases, making state management
the agent’s responsibility:

1. Setup Phase: The agent establishes preconditions (e.g. ensuring a file exists).
2. Execution Phase: The agent fulfills the primary instruction g.

3. Teardown Phase: The agent restores the environment to a neutral state (e.g. deleting a
created file).

Transitions are success-gated: the environment advances only when the agent completes the current
phase. This internalisation enables agents to learn complex, long-horizon workflows without artificial
external resets. A new task is sampled when the agent exhausts its step budget or signals completion.
We distinguish these terminations from infrastructure failures, which trigger non-punitive truncations
to decouple agent performance from transient device instability.

4 The Agent Learning Framework

In Section[I] we argued that a self-evolving reinforcement learning agent needs three core components:
a task curriculum, outcome verification, and persistent state. Standard reinforcement learning usually
treats these as fixed properties of the environment. To build an agent that improves continuously, we
need a fundamental shift in architecture: we must move these mechanisms out of the environment
and define them instead as dynamic properties of the agent itself.

This shift requires a flexible architecture that can handle any definition of agent state or interaction
logic. To address this, we introduce Darwin Mobile Agent, a multi-turn learning framework built on
GiGPO (Feng et al.,[2025)) and VERL (Sheng et al.| [2025)). It uses two primary abstractions to model
agent—environment interaction: Agents, which handle the internal decision-making, and Workflows,
which manage the interaction logic. By separating the loop’s coordination from the environment,
this design allows us to insert custom logic—such as dynamic task sampling or internal reward
generation—directly into the interaction process.

This modularity supports an iterative research strategy where external implementations, such as
curated task sets and LLM judges, are systematically replaced with internalised, learned equivalents.
In this section, we first detail our architectural abstractions and optimisation loop. We then define our
functional anatomy—comprising curriculum, verification, and state—and discuss the progressively
removing human priors to enable fully autonomous learning.

4.1 Environment Interaction as Agents and Workflows

The Agent interface transforms observations into executable actions. It manages the decision process
through two main functions. First, context processing (¢ : H — &S) turns the interaction history
into a model-compatible state representation s; (i.e. the prompt). This abstraction allows us to use
diverse, modular memory types (e.g. a sliding window or an evolving summary) without changing the
policy implementation. The model then processes this state to generate a token sequence y;. Second,
action projection (£ : V* — A) maps this output to the environment’s action space. Together, these
components encapsulate the specific prompting strategy and output formatting (e.g. JSON schemas or
coordinate-based DSLs), ensuring the environment interface or learning algorithm remains agnostic
to the underlying model backend.

The Workflow interface manages the agent—environment loop, acting as a general layer sitting
above the agent. Its primary purpose is to support diverse interaction patterns by separating the
control logic from the environment definition. For example, a workflow can coordinate complex
action-selection behaviours, such as hierarchical planning or multi-agent collaboration, treating them



as internal subroutines that eventually produce a final action a,. Crucially, this generality allows us to
implement mechanisms for dynamic task proposal and internal outcome verification, moving these
responsibilities from the environment into the agent’s interaction loop.

4.2 The Rollout and Optimisation Loop

We now consider the rollout loop, which coordinates the continuous interaction between the agent-
workflow system and a distributed set of environment instances to generate experience for learning.
At each step, the workflow processes a batch of observations to sample actions. These actions are
executed in parallel, and the outcomes are processed to generate a reward signal. The resulting atomic
transition tuples (o, at, ;) are then pushed asynchronously to a centralised replay buffer. Unlike
synchronous rollout loops that wait for all environments to terminate (Feng et al.,|2025), this design
treats instances independently; as soon as a task finishes, a new one is sampled immediately to ensure
zero idle time.

When the centralised buffer accumulates sufficient data, we trigger an update by retrieving only fully
completed trajectories, keeping active episodes in the buffer for subsequent steps. We adopt this
strategy to avoid the value-estimation bias introduced by truncating trajectories and bootstrapping
from the critic in the middle of a task. We find that relying on actual final rewards is necessary to
provide a more stable signal than these intermediate approximations. While the retrieved data is
off-policy by the time we use it, our experiments show that the stability gained from ground-truth
rewards outweighs the benefits of remaining strictly on-policy.

During the optimisation phase, we temporarily reconstruct the retrieved step data into temporally
ordered trajectories. This allows us to perform accurate credit assignment by using GAE to estimate
advantages at the granularity of individual tokens over the entire interaction horizon. This approach
improves upon prior methods (Feng et al., |2025) that neglect sequential dependencies by estimating
advantages for steps in isolation, while avoiding the limitations of rigid frameworks (Sheng et al.|
2025) that treat the full trajectory as a single continuous datapoint. By establishing the atomic
transition as the fundamental unit of data, we separate the optimisation mechanics from the interaction
structure, ensuring the learning process scales to arbitrary task-horizons unconstrained by the model’s
context window.

4.3 Anatomy of the Self-Evolving Agent

The proposed architecture for our self-evolving agent comprises three core components: a task curricu-
Ium, outcome verification, and persistent state. While the bitter lesson suggests that agents should not
rely on human priors, existing research often builds these mechanisms using knowledge external to
the agent. Whether they rely on hand-designed task sets (Rawles et al., [2023), infrastructure-specific
verification (Rawles et al.,|2024), or manually engineered context management (Ye et al.,|2025)), these
dependencies prevent the emergence of a truly autonomous system.

Our research goal is to systematically replace these external priors with learned equivalents. We
propose a three-stage trajectory in which responsibility for each component shifts from humans to
autonomous external models and, finally, to the agent itself. While the second stage removes the
human from the loop, the agent remains inherently capped by the static capabilities of the external
model. True self-evolution requires internalising these processes so that they evolve alongside the
agent. In this subsection, we detail the role of each component, its current implementation in Darwin
Mobile Agent, and a path toward removing all reliance on external knowledge.

Task Curriculum. In an open-ended setting, the objective is not to master a fixed set of problems,
but to sustain continuous learning. This objective requires a task curriculum that manages (1) what
tasks are presented and (2) when they are introduced. Its goal is to maintain a steady learning gradient
exactly at the frontier of the agent’s capabilities. This gradient is fragile: if a task is too simple, the
agent has insufficient signal to refine its policy; if it is too difficult, the learning process stagnates due
to a lack of learning signal. Our experiments show that policy refinement is most effective within a
narrow range of problems characterised by a low, but non-zero, initial success rate.

We propose a three-stage trajectory for internalising the curriculum and removing its reliance on
external knowledge. In the first stage, human designers observe agent performance to identify and
propose learnable problems. The second stage uses a more capable external model to automate task



selection by evaluating task learnability based on the agent’s interaction history. Finally, the agent
(meta-)learns to manage the curriculum internally, removing the fixed performance ceiling imposed
by external supervision.

In the current version of Darwin Mobile Agent, we adopt the first stage of this trajectory. We
manually select a diverse set of tasks from SPA-Bench (Chen et al., [2025) where our base models
exhibit non-zero but low success rates. This ensures the learning gradient necessary to verify that our
environment and optimisation loop effectively improve the agent’s capabilities.

Outcome Verification. For a reinforcement learning problem to be well-posed, the system must be
able to verify whether an agent has achieved its goal. Outcome verification provides the fundamental
reward signal required to drive the learning loop, establishing a ground truth independent of secondary
challenges such as shaped or sparse rewards. Unlike standard reinforcement learning environments,
which often rely on programmatic state verification, such functions do not exist in domains like
the mobile GUI that aim to emulate real-world complexity. Verifying success requires a semantic
understanding of whether the agent’s actions fulfilled the intent of the instruction. Because this cannot
be hard-coded for every possible goal, verification becomes a reasoning problem of comparable
complexity to achieving the goal itself.

We apply the three-stage trajectory to outcome verification by systematically shifting the responsibility
for verification from external sources to the agent. In the first stage, verification relies on human-
designed programmatic functions that do not generalise across environments because they require
direct access to internal system states (e.g. Rawles et al.,|2024). The second stage uses an external
model as an automated judge to enable semantic reasoning over open-ended tasks, though this remains
constrained by the model’s capabilities. Finally, the agent learns to verify its own outcomes, allowing
its understanding of success to evolve alongside its improving capabilities.

In our current implementation of Darwin Mobile Agent, we adopt the second stage of this trajectory
using an LLM-based judge. The primary challenge in this stage is determining the optimal inputs for
the judge, specifically regarding the prompt structure and the extent of the interaction history provided.
By validating various configurations against human-labelled ground truth from the SPA-Bench dataset
(see Appendix [B), we ensure that our initial judge offers a stable, accurate signal for the specific task
distribution used in our experiments, where programmatic verification is unavailable.

Agent State. In complex domains such as mobile GUIs, immediate observations are rarely sufficient
for effective decision-making; actions often depend on information accumulated across previous
interactions. The agent requires a context-processing function 1/ to persist and organise its raw
interaction history h; into a finite agent state s;. This state must manage a spectrum of information:
from short-term episodic memory tracking the immediate sequence of interactions, to the semantic
and procedural knowledge that constitutes an agent’s behavioural priors. This long-term knowl-
edge, internalised over a lifetime of experience, encompasses diverse patterns, including general
execution rules and app-specific functional details. Ultimately, the agent’s state design determines
how effectively the agent can compress its experience into a representation that informs its current
decision.

We apply a similar three-stage research trajectory to the agent state. In the first stage, the context-
processing function v is human-designed, using fixed heuristics, such as sliding-window buffers or
predefined schemas, to select which interactions remain in the prompt. The second stage introduces
an external model to act as a memory manager; this LLM-driven process reviews interaction histories
to distil episodic trajectories into concise summaries and extract higher-level knowledge, such as
app-specific functional patterns. Finally, in the third stage, the agent learns to manage its internal
state by autonomously performing this distillation and extraction. By learning to optimise its own
representation of history, the agent maintains an efficient and informative state without the need for
external supervision.

In our current implementation of Darwin Mobile Agent, we adopt the first stage of this trajectory
using a configurable episodic buffer as the context-processing function ). This mechanism maintains
a sliding window of the IV most recent interactions, with the depth of the action sequence and visual
history governed by the model’s specific context constraints. For models that generate semantically
meaningful outputs, such as Qwen3-VL (Bai et al., 2025), we record the history using these natural-



language action summaries rather than raw coordinate data. This ensures the agent state remains
informative even when visual observations are truncated due to context limits.

5 Results

Our evaluation provides initial validation of the Darwin infrastructure’s stability, scalability, and
robustness. Rather than focusing on peak performance against established benchmarks, we aim to
demonstrate that our asynchronous training pipeline provides a reliable environment for reinforcement
learning on mobile devices.

Unless otherwise specified, all experiments use a UI-TARS-7B base model (Qin et al.,2025)) trained
on a subset of eight tasks derived from SPA-Bench (Chen et al, [2025) (full details in Appendix [A].
These tasks are selected based on moderate initial success rates to provide a meaningful learning
signal. Training curves are smoothed using a sliding-window mean of the last 20 points. In our
plots, bold lines represent these averages, while fainter lines show the original data. To validate the
infrastructure, we conduct six targeted investigations:

1. Reward Signal Calibration: We assess the alignment of our LLM-based judge with human
evaluation.

2. Infrastructure Stability: We verify the framework’s ability to support stable policy im-
provement on a fixed task set.

3. Distributed Scalability: We examine how the system handles increased interaction through-
put by scaling the number of concurrent cloud-phone instances.

4. Learning Scalability: We assess how the learning process scales as we increase the number
of tasks in proportion to the available hardware.

5. Task Lifecycle Validation: We evaluate the system’s ability to manage the automated setup
and teardown phases introduced in Section

6. Learning Robustness: We examine how critic bias and initialisation strategies impact
learning stability and prevent policy collapse.

5.1 Validation of the LLM-Judge Reward Signal

Before evaluating the training framework, we must establish the reliability of the automated reward
signal. We validated our LLM-based verification judge against a human-labelled ground truth of 296
trajectories from the SPA-Bench dataset (147 English; 149 Chinese). Human annotators provided
binary success labels by reviewing the natural-language goal alongside the complete interaction
history.

To identify the most reliable reward signal for our pipeline, we compared various judge prompts
and history configurations as detailed in Appendix [B] The optimal configuration, which uses the full
visual and action history, achieves an F1 score of 0.91 (90% accuracy) on English tasks and 0.85
(89% accuracy) on Chinese tasks. These results suggest that the automated judge provides a stable
and accurate signal for the specific task distribution used in our experiments, justifying its use as the
supervisor for our reinforcement learning pipeline.

5.2 Stability of Policy Optimisation

We start by verifying that the core reinforcement learning loop, comprising asynchronous interaction,
verification, and policy optimisation, is stable under standard conditions. To evaluate this, we use
a controlled setting in which eight tasks are executed concurrently on eight cloud phones. This
configuration allows us to establish a baseline for policy improvement before investigating more
complex system scaling behaviours.

As shown in Figure 2] the agent exhibits a clear upward trend in the mean success rate over the course
of training. During the first 30 training steps, we implement a critic warm-up phase to initialise the
value function. During this period, the actor parameters remain frozen; consequently, any fluctuations
in the success rate are due to environmental and sampling variance and do not reflect policy updates.
Following this warm-up, the agent demonstrates consistent improvement across the task set. These
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Figure 2: Mean Success Rate on SPA-Bench. The plot illustrates the average performance across
eight tasks. Each training step represents 256 environment steps (8 phones x 32 steps per rollout),
matching the maximum task horizon. The first 30 steps constitute a critic warm-up phase where the
policy parameters are fixed.
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Figure 3: Distributed Scalability Evaluation. (a) Scaling from 8 to 32 phones shows consistent
convergence despite increased off-policy data. (b) Throughput improves from 8 to 16 phones but
saturates at 32, as the system bottleneck shifts to model inference and batching overhead.

results suggest that the Darwin infrastructure can maintain a stable policy optimisation loop in the
mobile GUI domain, providing a functional baseline for investigating the system’s scalability and
robustness.

5.3 Distributed Scalability and System Throughput

We investigate the impact of hardware scaling on training throughput and learning stability by varying
the number of concurrent cloud phones while maintaining a fixed task set and rollout size. This
experiment aims to determine how the infrastructure handles increased parallelism in interactions
and the resulting off-policy data drift. We evaluate three configurations: 8, 16, 32 concurrent phones,
with the rollout size fixed at 256 steps across all settings.

The asynchronous buffer accumulates experience until the 256-step threshold is reached; however, to
avoid bootstrapping from a biased critic, the system waits for complete trajectories from terminated
episodes. With higher device counts, this leads to significant over-collection per update. This excess
experience is carried forward into subsequent training steps, increasing the proportion of off-policy
data in the rollout buffer. As shown in Figure[3d] this drift does not degrade learning effectiveness,
as all configurations exhibit comparable convergence to the same mean success rate. Furthermore,
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the 32-phone configuration demonstrates resilience to hardware instability; despite a major network
outage mid-training (evidenced by the plateau in Figure [3b)), the agent resumed learning without
destabilisation once connectivity was restored.

Figure [3b|illustrates the corresponding impact on wall-clock throughput. We observe a reduction
in training time when scaling from 8 to 16 phones. However, these gains saturate at 32 phones,
as indicated by a training gradient similar to that in the 16-phone setting (excluding the device
downtime). This suggests that at this scale, the system bottleneck shifts from environment interaction
to the compute constraints of model inference, such as the increased batching overhead required
to process more parallel streams. These results suggest that the Darwin infrastructure can robustly
accelerate training through parallelism while remaining resilient to the transient failures inherent in
real-world mobile environments.

5.4 Task Scalability

To evaluate the infrastructure’s capacity to handle increased environmental complexity, we investigate
how the system scales when the number of tasks increases in proportion to available hardware. We
compare a baseline configuration of 8 tasks executed on 16 concurrent phones against an expanded
setting of 16 tasks on 32 phones. In the 16-task setting, we double both the total experience collected
per training step and the PPO batch size to maintain a constant resource-to-task ratio across the two
experiments.
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Figure 4: Horizontal Scalability across Task Sets. The plot compares the mean success rate when
training on 8 tasks (16 phones) versus 16 tasks (32 phones). Despite the increased task diversity, both
configurations exhibit similar convergence rates.

As shown in Figure ] the learning curves for both the 8-task and 16-task configurations are sim-
ilar. While each curve represents a mean over a different task distribution, they converge within
the same number of training steps. These results suggest that the Darwin infrastructure supports
horizontal scaling; the learning progression is preserved when hardware resources and optimisation
hyperparameters are scaled proportionally with task diversity. This relationship indicates that the
framework provides a predictable path for “Big World” training, where environmental complexity
can be managed by incrementally adding hardware to maintain consistent learning performance.

5.5 Task Lifecycle Validation

To ensure the infrastructure can maintain environment consistency over extended training durations
without manual intervention, we validate the automated task lifecycle protocol described in Sec-
tion[3.3] This experiment evaluates the system and agent’s ability to navigate the setup and teardown
phases required for automated environment resets. We compare a baseline setting using standard
environment resets against the “cycle” protocol. Both configurations employ 8 tasks executed on 16
concurrent cloud phones.

The task set is heterogeneous: three tasks require no auxiliary phases, one includes a setup phase, and
four include teardown phases. As shown in Figure 5] the inclusion of these explicit phases does not
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Figure 5: Task Lifecycle Stability. The panels illustrate the mean success rate across the three
protocol phases. The “cycle” protocol successfully manages automated transitions; the agent exhibits
a learning trend during the setup and teardown phases that mirrors the progression of the primary
task.
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Figure 6: Critic Robustness Evaluation. (a) Calibrated initialisation prevents policy collapse;
stability is further supported by combining this initialisation with a warm-up phase. (b) Treating
truncated trajectories as terminal by assuming the next state-value is zero (V' (s’) = 0) outperforms
bootstrapping from a learned critic.

introduce instability or performance degradation. The mean success rate in the primary task execution
phase (Figure[5b) remains comparable between the two protocols, indicating that the agent acquires
these auxiliary skills within the same total environment interaction budget without a trade-off in core
task performance. Furthermore, the agent demonstrates a clear upward learning trend in both the
setup and teardown phases (Figures[5ajand [5¢). These results validate the task lifecycle protocol as a
functional mechanism for autonomous, long-term training in the mobile GUI domain.

5.6 Critic Bias and Bootstrapping Stability

In multi-turn reinforcement learning for large language models, the critic is often the primary source
of instability. Due to the combination of sparse rewards and long horizons, GAE-based advantage
estimates rely heavily on bootstrapping from the critic to estimate state values. Consequently, policy
improvement is highly sensitive to the accuracy of these value estimates. We investigate this sensitivity
by evaluating the impact of critic initialisation and bootstrapping.

As shown in Figure[6a] a randomly initialised critic without a warm-up phase leads to immediate
policy collapse. Because returns in this domain are bounded between 0 and 1, random initialisation
can produce values outside this range, generating incorrect advantage estimates that provide a
destabilising signal to the policy. Consistent with previous findings (Yue et al., 2025), we find that
a warm-up phase prevents this collapse by allowing the critic to reach a more accurate state before
the policy is updated. Surprisingly, initialising the critic bias to 0.1 (¢ = 0) provides a comparable
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safeguard. This calibrated initialisation alone prevents collapse and even enables faster learning by
allowing for immediate policy updates. While these results suggest that calibrated initialisation can
be sufficient, we recommend including a warm-up phase as a safeguard against an inaccurate initial
bias.

This sensitivity to critic bias is further evidenced by the handling of trajectories truncated by external
factors, such as system crashes, rather than reaching a natural conclusion. Although GAE theory
supports bootstrapping from the critic to estimate the next state-value s’ at such points, Figure
suggests that treating these truncations as terminal states with a future value of zero yields faster
learning and higher final success rates than relying on potentially inaccurate critic estimates. These
results suggest that in multi-turn LLM tasks, a predictable, pessimistic bias may be safer for estimating
advantages and updating the policy than an unreliable bootstrap from the learned value function.

6 Conclusion

In this report, we have introduced the Darwin Mobile Agent, an open-source infrastructure designed
as a foundation for self-evolving agents in the mobile GUI domain. By treating the mobile ecosystem
as a “Big World” for agent development, we move beyond the limitations of static, human-annotated
datasets toward a framework that learns through autonomous interaction. Our work addresses the
data-collection bottleneck in real-world mobile environments by providing a stable, asynchronous
pipeline powered by cloud phones.

Alongside this infrastructure, we propose a conceptual roadmap for systematically removing human
priors from three fundamental pillars of self-evolution: task curriculum, outcome verification, and
agent state. Our initial results suggest that this framework provides the stability and scalability
required for policy optimisation in complex, non-stationary environments, even under hardware
instability. While the current implementation represents only the first stage of our proposed roadmap,
it establishes the practical and theoretical foundation necessary for the eventual goal of the Darwin
system: agents that autonomously evolve their capabilities through their own experience.
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A Implementation Details

Across all experiments, we follow the online interaction-update loop described in Section 4.2
Each run is executed on a multi-GPU server and typically takes 24 to 36 hours to complete. The
hyperparameters are listed in Table[T] The tasks for each experiment are selected from SPA-Bench
(Chen et al., 20235)), which covers diverse everyday workflows (e.g. e-commerce, social, utilities)
derived from production applications with visually dynamic interfaces and naturally occurring Ul
variations. It includes both English and Chinese instructions, enabling evaluation of multilingual
agent capabilities. Table [2]reports the task subsets used in our experiments.

Table 1: Training hyperparameters in the training runs.

Hyperparameter Value
Data / sequence lengths

Max prompt length 8192
Max response length 512
Actor memory length (images) 1
Environment / rollout

Episode horizon H (max steps) 32
Rollout steps per update 256
Action execution wait (seconds) 2
Optimisation (PPO)

Discount factor y 1.0
GAE A 0.95
Actor learning rate 1x10°
Critic learning rate 1x107°
Actor PPO epochs per update 4
Actor PPO mini-batch size 64
Micro-batch size per GPU 16
PPO clip ratio (high) 0.2
Critic warmup / stabilisation

Critic warmup epochs 30
Warmup PPO epochs per step 4
Warmup GAE A\ 1.0

B LLM Judge Configuration and Performance

To identify a reliable reward signal for the reinforcement learning pipeline, we evaluated the alignment
of the LLM judge against human-labelled ground truth. We conducted a feature ablation study using
296 task trajectories (147 English; 149 Chinese) to determine which prompt configurations best
inform the verification process. All evaluations were performed using gemini-2.5-flash.

As shown in Table [3] providing the complete interaction history is the most significant factor in
judge accuracy. The baseline configuration, which includes the full trajectory of screenshots and
actions, achieves an F1 score of 0.87 on English tasks and 0.82 on Chinese tasks, significantly
outperforming the configuration that only evaluates the final state. We further evaluated three primary
augmentations to this baseline: marked interaction (visual indicators of action coordinates), purpose
analysis (inference of agent intent), and execution summaries (state change analysis).

For English-language tasks, adding only marked interaction coordinates yielded the highest alignment
with human labels, achieving an F1 score of 0.91. For Chinese-language tasks, performance was
highest when combining marked coordinates with execution summaries, yielding an F1 score of
0.85. Notably, adding multiple layers of explicit reasoning (e.g. purpose analysis combined with
summaries) did not improve performance.
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Table 2: Selected Spa-Bench tasks used in the experiments. The 16-task setting extends the base
8-task subset.

App Task

Base 8 Tasks

Amazon Get the search results for ’sunglasses’.

Booking.com Get the search results for stays in Berlin. Select any date, rooms and guests.
Booking.com Navigate to app settings.

Chrome Clear all active tabs.

Clock Set an alarm for 9am on weekdays.

Clock Set Home time zone to ’Hong Kong’.

Settings Go to notification settings. Turn on Notification History.
Settings Go to display settings. Turn on Dark Theme.

Additional 8 Tasks added for the 16-task setting

Chrome Get the search results for Taylor Swift.

Clock Add current time at London (UK) to clock.

Dictionary Merriam Webster Look up the definition of the word ’agent’.

Google Play Get the search results for WhatsApp.

Google Play Check the details of General settings.

Settings Go to display settings. Turn on Dark Theme.

X Draft a post with the content ’Written by Agentl’.

X Search for the account @Mayday_EN. Follow it.

Table 3: Performance metrics for the LLM judge across all prompt and visual configurations.

English Tasks Chinese Tasks
Configuration F1 Acc Prec Rec F1 Acc Prec Rec

Final Trajectory State Only 0.78 0.76 0.86 0.71 0.70 0.80 0.76 0.65
Baseline (Full Trajectory) 0.87 085 090 084 082 087 0.86 0.78

+ Marked Only 091 090 093 090 0.83 0.89 0.89 0.78
+ Purpose Only 088 0.86 0.88 088 0.80 0.87 085 0.76
+ Summary Only 090 0.88 092 088 0.82 088 091 0.74
+ Marked + Purpose 0.88 0.86 093 083 0.76 0.84 0.84 0.69
+ Marked + Summary 087 0.86 091 084 0.85 0.89 0.88 0381
+ Purpose + Summary 088 0.86 091 085 0.78 0.86 088 0.70
+ All Features 089 0.88 090 088 0.80 0.87 093 0.70

C Action Space

We define a discrete action space that captures the fundamental interactions an agent can perform on
a mobile device. Each action is parameterised by explicit arguments (e.g. coordinates, directions, or
text content), enabling precise, executable control. The complete set of supported actions and their
corresponding parameters is summarised in Table 4]

Action Definition

click(x, y) Clicks at screen coordinates (z, y).
long_press(x, y) Performs a long press at coordinates (x, y).
type(content) Types the specified text content.

scroll(x, y, direction) Scrolls the screen at (x,y) in the given direction.
drag(x1, y1, X2, y2) Drags from (z1,y1) to (z2, y2).

open_app (app) Launches the specified application.
press_home () Presses the home button.

press_back() Presses the back button.

wait() Pauses execution to allow the UI state to update.
finished() Marks the task as complete.

Table 4: Action space of the agent and their corresponding definitions.
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